Remarks I Disclaimer

The information and recommendations contained in this Design & Installation Manual ("DIM") are offered as a service to architects, constructors, installer and other persons involved with our products and are not intended to relieve them from their own responsibility. The information and recommendations provided herein are believed by Eternit (Schweiz) AG ("Eternit") to be accurate at the time of preparation of this DIM, or obtained from sources believed to be generally reliable. Eternit makes no warranty concerning the accuracy of the content of this DIM and shall not be liable for claims relating to any use regardless of whether it is claimed that the information or recommendations are inaccurate, incomplete, or otherwise misleading. The information and recommendations herein are intended to be used with the judgment and experience of professional personnel competent to evaluate the significance and limitations of the material contained. Eternit expressly disclaims any guarantees or warranties, expressed or implied, for anything described or illustrated herein and assumes no responsibility or liability for damages of any kind, including - without limitation - bodily harm, injury or damage to property inferred from this DIM or the use of the materials described herein.

Disclaimer

Validity of DIM
Please consult your local distributor and/or the Technical Advisor prior to the commencement of shop drawings or installation for the most current DIM guide. The current DIM can always be found at www.swisspearl.com. All previous DIM guides should be disregarded and are no longer valid.

More general information available on www.swisspearl.com

CH- 8867 Niederurnen
Tel. +41 55 617 11 60
Email: info@swisspearl.com

Maritime conditions
Maritime conditions call the use for stainless steel rivets. Those may be used on steel or anodized aluminum sub frame. Maritime conditions are considered 50m to 1km (0.03 to 0.6 miles) from the sea. Material specification for sub frame, fasteners and accessories to cater for maritime conditions according to local standards.

Advantages of fiber cement products
• Maximum protection against weather
• Excellent longevity
• Easy installation in any climate
• Almost no maintenance required
• Proven details
• No cracks, paint or sealant problems
• High sustainability
• Non combustible

Project specific ordering
Subtle visual differences may occur between product batches. Therefore we recommend ordering by job or specific elevation if ordering in phases.
Overview panel sizes

8 mm & 12 mm thick panels - max. net panel sizes

Swisspearl Largo

Product data
- Density > 1.75g/cm³
- Modulus of elasticity ca. 15'000 MPa
- Design resistance for bending ca. 8.0 MPa
- Thermal expansion coefficient 0.01 mm / m / °K
- Fire classification according to NFPA 285, EN 13501-1 & A2-s1, d0
- Frostresistance and durability under EN 12467
- Thermal range -40°C to +80°C

Overview

<table>
<thead>
<tr>
<th>Swisspearl Largo</th>
<th>Nobilis</th>
<th>Zenor</th>
<th>Carat Reflex</th>
<th>Avera</th>
<th>Incora</th>
<th>Texel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thickness (mm)</td>
<td>8/12</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>Weight (ca, kg/m²)</td>
<td>15.7/24.6</td>
<td>16.7</td>
<td>16.7</td>
<td>24.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Format (mm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Untrimmed panels max. net panel sizes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3070x1270</td>
<td>3050x1250</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2530x1270</td>
<td>2510x1250</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2030x1270</td>
<td>2010x1250</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3070x950</td>
<td>3050x930</td>
<td></td>
<td>*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2530x950</td>
<td>2510x930</td>
<td></td>
<td>*</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Panels with 930 mm width are only available in CARAT colors Agate, Black Opal, Coral, Crystal, Sapphire and Topaz and require a minimum order quantity of 500 panels. Avoid to mix the two widths. Base sheets in width 1230 and 930 mm are manufactured as different production batches so that the shade may deviate.
Program I | Sizes

HR coating
Special coating with increased scratch and UV resistance that allows removal of graffiti using Ace-tone. Availability as per Program and Colors.

F-coating for façade
For inclined cladding, panels with F-coating cater for increased exposure to weathering. It is opaque and matched to standard finishes, and has higher UV resistance.

R-coating for roof
Roofing panels must have minimum fall of 6° (10.5%). R-coating is opaque and matched to standard finishes, and has higher UV resistance. The panels in the color ranges Amber and Onyx are supplied with standard grey panel core.

Application
Swisspearl Largo panels can be attached to vertical timber or metal profiles. Suitable for new facades or existing cladding renovations.

Untrimmed full size panels
Untrimmed panels will only be provided to approved fabricators. Untrimmed Swisspearl Largo panels must be trimmed 10mm on all four sides.

Sealed cut edges
All panel edges cut on site or at fabricators workshop must be sealed by LUKO sealer, provided by Swisspearl.

Signage, light fittings, etc.
Provide structural attachment points behind the panel as required. Leave generally min. 6 mm (¼") free gap between panel edge and installation - so as not to constraint the panel movement.

Sealed cut edges
All panel edges cut on site or at fabricators workshop must be sealed by LUKO sealer, provided by Swisspearl.
When installed all the arrows to Reflex panels must point in one and same direction.

Landscape orientation
All arrows to the left

Portrait orientation
All arrows up

Cutting CAD drawing
Regarding panel fabrication at the factory based upon CAD drawings as for odd panel shapes, perforations etc.: Arrows must be indicated on the drawings to all panels. Panels always shown as seen on building elevation (finished face).

Panels are shown as on building elevation (finished face).
Adhesive application

Adhesive technology
Specially ordered ARSB panels are signified by printed squares on the backside of the panel. Please consult with your adhesive manufacture prior to installation. Zenor panels only available for face fastened system.

General requirements
Glue manufacturer’s instructions for use must be strictly followed regarding all aspects, including:
- Cleanliness of panels and support profiles
- Panel and air temperature
- Air moisture content
- Etc.

Support profiles
- For exterior application the panels may be glued to aluminium supports only.
- Sub framing to be approved by glue manufacturer prior to stating the installation.

Panel ordering
Panels ordered for adhesive application are called ARSB and are available upon request at time of order. Standard Swisspearl panels cannot be used for adhesive application.

Warranty
Panel manufacturer provides functional warranty for the panels only. Warranty for the attachment of the panels to be obtained by glue manufacturer.
Program 1 Bending panels on site

Swisspearl Largo 8 mm portrait

Radius ≥ 20 m

Portrait panels, attached to vertical supports. Minimum radius = 20 m. Fix the battens with 2 screws per fixing point.

Swisspearl Largo 8 mm landscape

Radius ≥ 16 m

Landscape panels, attached to vertical supports at max. 600 mm centers. Minimum radius = 16 m. Fix the battens with 2 screws per fixing point.
Program I Fasteners

To timber battens
1. Screw, inox, saucer head Ø 12 mm, T20 drive, blank or powder coated
 - 4.8×30, 4.8×38 mm
 - 4.8×44, 4.8×60 mm
2. Torx bit T 20 W

To aluminium profiles
3. Aluminium rivet head Ø 15 mm, blank or powder coated
 - 4.0×18-K15, 8-13 mm grip range
 - 4.0×24-K15, 13-18 mm grip range
 - 4.0×30-K15, 18-23 mm grip range
4. Fixed point sleeve aluminum type 8

To steel profiles
5. Stainless steel rivet, head Ø 15 mm, blank or powder coated
 - 4.0×18-K15, 9-14 mm grip range
 - 4.0×23-K15, 14-19 mm grip range
6. Fixed point sleeve stainless steel type 8

Maritime conditions
Maritime conditions call the use for stainless steel rivets. Those may be used on steel or anodized aluminum sub frame. Maritime conditions are considered within a distance of 1 km (0.6 miles) from the sea. Material specification for sub frame, fasteners and accessories to cater for maritime conditions according to local standards.
Program I Fasteners

Joint material

1. EPDM band, black, 60 mm wide for intermediate supports with side lips, in 50m rolls
2. EPDM band, black, 100 & 120 mm wide for butt joints with side lips, in 50m rolls
3. EPDM band, black, 150 mm wide for inner and outer corners with side lips, in 25m rolls
4. Ventilation profile, raw aluminum or standard colors, 50x30 mm, 70x30 mm, 100x40 mm, 2500 mm long, 0.6 mm thick
5. L-flashing, stainless steel, millor powder coated, 0.5 mm thick 2510 / 3050 mm long
6. Horizontal joint flashing, aluminium, powder coated black, 0.5 mm thick 2510 / 3050 mm long
Rear ventilated cladding

The design principle involves the deflection (screening) of the rain water. As the panel joints are not sealed, minimal amounts of water can gain access into the air cavity behind the panel. The cavity is naturally ventilated by vent gaps at bottom and top, so that any moisture will evaporate naturally by thermal action.

Cladding (1)
Panels with open or closed joints, in one plane or lapped.

Sub framing (2)
To support the cladding dead and wind load generally vertical panel supports in timber or metal.

Ventilation cavity (3)
Cavity behind panel with ventilation gaps at bottom and top.

Thermal insulation layer (4)
To increase the thermal insulation capacity of the exterior wall.

Substrate (5)
Face of exterior wall, such as plaster, concrete, exterior sheathing, wind proofing layer, etc.

Exterior wall (6)
Brick, concrete, wood and steel studs.
Design | General remarks

Application
Swisspearl cladding panels can be attached to vertical supports made of timber, aluminium or steel.

Windload
Always consider local standards when determining panel fastener differences. This is especially important for tall buildings, for buildings with special shapes and for high wind exposure areas.

Ventilation cavity
Building tolerances must be allowed for. The cavity may not be reduced by horizontal profiles or any stray objects such as loose insulation and other materials.

Building expansion joints
The buildings structural expansion joints should be considered when designing subframe systems. Structural expansion joints must be applied to sub frame and cladding as provided to the building structure.

Wind load zones
As per scheme there are two wind load zones. The corner zones generally are subject to increased negative wind load (suction) due to turbulence at the edges of the building. The applicable wind load values must be determined in the cladding specification.

Min. manufacturer cavity depth:
Mandatory for issuance of the warranty letter.

<table>
<thead>
<tr>
<th>Cladding height</th>
<th>min. cavity</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 6 m</td>
<td>20 mm</td>
</tr>
<tr>
<td>6 - 30 m</td>
<td>30 mm</td>
</tr>
<tr>
<td>> 30 m</td>
<td>40 mm</td>
</tr>
</tbody>
</table>
Design | General remarks

Panel support
Panel must be supported on an even surface. If perforated angles are placed between the panel and batten/vertical profile the closure piece must not exceed 0.8 mm. Perforated angles have to allow ventilation entrance with a min. perforation of 60%. The use of an aluminium mesh is possible. It has a high ventilation ratio, thin material thickness (no push out of panel) and is easy to install.

Material compatibility
Untreated aluminum material such as Window sills, frames, etc. is not compatible with cement and must be protected against dust from drilling panels, etc. Aluminum components are to be used in anodized or powder-coated or Kynar Coated for exterior applications with protective films.

Sealant material
Generally to keep the cladding maintenance free the use of sealants should be avoided. Where the use of sealant is unavoidable Polyurethane, Acrylic or Hybrid Polymer products would be best suitable. Before applying any sealant to fiber cement material the compatibility must be checked as certain materials leave permanent staining on panel surface.

1 Swisspearl Largo
2 Fastener
3 Panel support
4 Perforated angle
5 Recess
Sub frame types

1. Substrate
2. Thermal insulation
3. Vertical batten
4. Horizontal batten
5. Panel support
6. Vent cavity
7. Swisspearl Largo panel
8. Spacer screw
9. Bracket
10. Horizontal batten
11. Vertical batten

Timber / timber
Timber / spacer screw
Metal / timber verticals
Metal
Design | Metal supports

Swisspearl rivet

![Swisspearl rivet diagram]

Panel edge distances

![Panel edge distances diagram]

Holes in panel for rivets
- Diameter 9.5 mm

Standard edge distances
- Horizontally 30 mm
- Vertically 80 mm

Minimum edge distances
- Horizontally 30 mm
- Vertically 60 mm

Holes in panel for rivets
- Diameter 9.5 mm

Fixed, sliding points
- Each panel must be fastened by 2 fixed points in the panels center to support the panels deadload. All other rivets are sliding points.

Drill holes Ø 4.1 mm to metal profiles
- Use centering drill gauge so the holes will be concentric to the Ø 9.5 mm hole in the panel. Use drill bit type A for aluminum profiles and type S for steel.

Maximum edge distance
- Horizontally and vertically 100 mm

Panel joints
- Typical panel joint is 8 mm, this allows panel scraps to be used as spacers. Wider joints will make any inaccuracies in the installation less noticeable.

Sub-frame engineering
- Engineer / contractor is responsible for the design and installation of all sub frame parts including all pertaining fasteners.

The sliding point connection is NOT meant to accommodate building drift or seismic movement.
Aluminium profiles
Aluminium thickness should be a min. of 2 mm. Profiles should not exceed 3 m and profile breaks should coincide with panel joints.

Aluminium rivet
4.0 x 18 - K15 rivet, head Ø 15 mm, powder coated or blank, grip range 8 - 13 mm.

Staggered horizontal panel joints
Use two vertical profiles to vertical panel joint so that each can be broken on its horizontal panel joint leven.

Black panel joints
Panel joints read as shadow lines. It is recommended to blacken the metal where visible, with paint or PVC paint tape.

Steel profiles
Steel panel supports to be min. gauge 18 (1.27 mm / 0.05") to obtain nominal pull out value. Profiles should not be longer than 6 m (20').

Stainless steel rivet
4.0 x 18 - K15 rivet, head Ø 15 mm, powder coated or blank, grip range 9 - 14 mm.

Sub-frame engineering
Engineer / contractor is responsible for the design and installation of all sub frame parts including all pertaining fasteners.

Horizontal joint
Any breaks to panel support profiles must be located at panel joints as shown. Flashing cut at one vertical as shown to prevent lateral dislocation of flashing.
Panel may be cantilevered max. 400 mm.

1 Swisspearl Largo 8 mm
2 Rivet
3 Aluminum profile
4 Thermal insulation
Rivet installation
Use rivet gun GESIPA ACCUBIRD or similar. Do not use pneumatic equipment. Use centering drill gauge with drill bit Ø4.1 mm to obtain concentric hole [A/3].

Fixed point for Aluminum Sub-frame
Fixed point for Aluminum, Type 8 Ø9.4 mm [B/4]
- Rivet head Ø15 mm 4.0×18-K15, blank or powder coated, grip range 8-13 mm

Fixed point for Steel Sub-frame
Fixed point steel A2, Type 8, Ø9.4 mm [B/4]
- SS Rivet, head Ø15 mm, 4.0×18-K15, blank or powder coated, grip range 9-14 mm

Each panel must be fastened by 2 fixed fastening points in the panel center, installed first. All the others are sliding points.

Sliding points for Aluminum Sub-frame
Use centering drill gauge with drill bit Ø4.1 mm to obtain concentric hole [C/5]
- Alu Rivet, head Ø15 mm 4.0×18-K15, blank or powder coated, grip range 8-13 mm

Sliding points for Steel Sub-frame
- Sliding points for Steel Sub-frame. Use centering drill gauge with drill bit Ø4.1 mm to obtain concentric hole [C/5]
- SS Rivet, head Ø15 mm, 4.0×18-K15, blank or powder coated, grip range 9-14 mm
Metal Support

Metal sub frame - 8 mm façade panels - rivet distances

<table>
<thead>
<tr>
<th>Characteristic value of wind suction (according to European standards)</th>
<th>Design value of wind suction (with a safety coefficient of 1.5)</th>
<th>Spacing d (maximal distance between rivets)</th>
</tr>
</thead>
<tbody>
<tr>
<td>kN/m²</td>
<td>psf</td>
<td>kN/m²</td>
</tr>
<tr>
<td>-0.70</td>
<td>-13.90</td>
<td>-10</td>
</tr>
<tr>
<td>-1.00</td>
<td>-20.90</td>
<td>-15</td>
</tr>
<tr>
<td>-1.30</td>
<td>-26.50</td>
<td>-19</td>
</tr>
<tr>
<td>-1.80</td>
<td>-26.50</td>
<td>-19</td>
</tr>
<tr>
<td>-2.30</td>
<td>-48.70</td>
<td>-20</td>
</tr>
<tr>
<td>-2.70</td>
<td>-55.70</td>
<td>-20</td>
</tr>
<tr>
<td>-3.30</td>
<td>-69.60</td>
<td>-20</td>
</tr>
<tr>
<td>-4.00</td>
<td>-83.50</td>
<td>-20</td>
</tr>
</tbody>
</table>

Above table is a guide line for 2 or more fasteners in vertical and horizontal direction. The spacings have been calculated considering a safety factor of 1.5. The spacings originate from 1230x3050 mm full size panels with equal distances between rivets. Data may be interpolated.
Metal sub frame - 8 mm façade panels - rivet distances

Engineering responsibility
The spacings in above table are provided as indication. For the actual cladding design a locally licensed engineer shall assume responsibility for calculation and verification.

Panel data
- Modulus of elasticity
 MOE ca. 15’000 MPa
- Modulus of rupture
 (characteristic)
 MOR (average) > 22 MPa
- Design value bending resistance 8.0 MPa
 (2.5 safety factor)
- Density > 1.75g/cm³

Design values
Resistance of aluminum and steel rivets 4.0x18 K15

<table>
<thead>
<tr>
<th>Position</th>
<th>Distance between fasteners (spacing)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>720 mm</td>
</tr>
<tr>
<td>Middle</td>
<td>774 N</td>
</tr>
<tr>
<td>Edge</td>
<td>399 N</td>
</tr>
<tr>
<td>Corner</td>
<td>254 N</td>
</tr>
</tbody>
</table>

The data was evaluated according to ETAG 034 using 8 mm panel, and includes a safety factor of 2.5. Diameter of panel hole must be 9.5 mm, and rivet head must be 15 mm. Min. thickness for steel profiles to be 1.27 mm, and 2 mm for aluminum. Edge distances 30 mm horizontally, 80 mm vertically. The data may be interpolated.
Metal support

Metal sub frame - 12 mm façade panels - rivet distances

<table>
<thead>
<tr>
<th>Characteristic value of wind suction (according to European standards) kN/m²</th>
<th>Design value of wind suction (with a safety coefficient of 1.5) kN/m²</th>
<th>Spacing d (maximal distance between rivets)</th>
</tr>
</thead>
<tbody>
<tr>
<td>psf</td>
<td>psf</td>
<td>Vertical panel (portrait) horizontally mm</td>
</tr>
<tr>
<td>2.08 43.44</td>
<td>3.12 65.16</td>
<td>570</td>
</tr>
<tr>
<td>-2.31 -48.31</td>
<td>-3.47 -72.47</td>
<td>570</td>
</tr>
<tr>
<td>-2.88 -60.15</td>
<td>-4.32 -90.22</td>
<td>570</td>
</tr>
<tr>
<td>-3.39 -70.73</td>
<td>-5.08 -106.09</td>
<td>570</td>
</tr>
<tr>
<td>-4.22 -88.13</td>
<td>-6.33 -132.20</td>
<td>570</td>
</tr>
<tr>
<td>-5.10 -106.51</td>
<td>-7.65 -159.77</td>
<td>380</td>
</tr>
<tr>
<td>-7.09 -148.00</td>
<td>-10.63 -222.00</td>
<td>380</td>
</tr>
<tr>
<td>-8.86 -185.04</td>
<td>-13.29 -277.56</td>
<td>380</td>
</tr>
</tbody>
</table>

Above table is a guide line for 2 or more fasteners in vertical and horizontal direction. The spacings have been calculated considering a safety factor of 1.5. The spacings originate from 1230x3050 mm full size panels with equal distances between rivets. Data may be interpolated.
Metal sub frame - 12 mm façade panels - rivet distances

Engineering responsibility
The spacings in above table are provided as indication. For the actual cladding design a locally licensed engineer shall assume responsibility for calculation and verification.

Panel data
- Modulus of elasticity
 - MOE ca. 15'000 MPa
- Modulus of rupture
 - (characteristic) MOR (average) > 22 MPa
- Design value bending resistance 8.0 MPa (2.5 safety factor)
- Density > 1.75g/cm³

Design values

<table>
<thead>
<tr>
<th>Position</th>
<th>Distance between fasteners (spacing)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>720 mm</td>
</tr>
<tr>
<td>Middle</td>
<td>1723 N</td>
</tr>
<tr>
<td>Edge</td>
<td>1101 N</td>
</tr>
<tr>
<td>Corner</td>
<td>718 N</td>
</tr>
</tbody>
</table>

The data was evaluated according to ETAG 034 using 8 mm panel, and includes a safety factor of 2.5. Diameter of panel hole must be 9.5 mm, and rivet head must be 15 mm. Min. thickness for steel profiles to be 1.27 mm, and 2 mm for aluminum. Edge distances 30 mm horizontally, 80 mm vertically. The data may be interpolated.
Design | **Metal supports**

Single span no intermediate support

Max. distance between fasteners for single span panels 570 mm, unless smaller distances is required by high wind load as per table of fastener distances.

If more than 5 single span panels are adjoining each other - the chain of fixed points must be interrupted by a different configuration of the fixed points.

Consult with technical advisor.

Single span

Fixed point Ø 9.5 mm [F]
Sliding point Ø 9.5 mm

Soffit panels

Fastener distances for soffit panels and suspended ceilings not to exceed 500 mm.
Design 1 **Metal supports**

Sample rivet layouts, final layout to be determined by a local structural engineer.

Swisspearl Largo vertical panel (portrait)

If no rivet at half height go with [F] to row above.

Fixed points [F] center and left.

Fixed point Ø9.5 mm [F]

Sliding point Ø9.5 mm
Sample rivet layouts, final layout to be determined by a local structural engineer.

Swisspearl Largo horizontal panel for odd number of rivets

Between fixed points, the max. distance can be 1 sliding point.
Swisspearl Largo

Sample rivet layouts, final layout to be determined by a local structural engineer.

Swisspearl Largo horizontal panel (landscape) for even number of rivets
Sample rivet layouts, final layout to be determined by a local structural engineer.

Swisspearl Largo stripes or Linearis

<table>
<thead>
<tr>
<th>Fastener distances [d1-d4]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wind load</td>
</tr>
<tr>
<td>Building height up to (m)</td>
</tr>
<tr>
<td>Strip width 100-150 mm [d1]</td>
</tr>
<tr>
<td>Strip width ≤ 200 [d2]</td>
</tr>
<tr>
<td>Strip width ≤ 300 [d3]</td>
</tr>
<tr>
<td>Strip width ≤ 400 [d]</td>
</tr>
</tbody>
</table>

Swisspearl Linearis panel strips are delivered without drill holes. Installation details as per this DIM are applicable.

- **Fixed point**: Ø9.5 mm [F]
- **Sliding point**: Ø9.5 mm
Swisspearl Largo stripes or Linearis with open joints

Product
Swisspearl Linearis are ready-made Largo panel strips, for installing with open joints. Whether monochrome or multicolored, equal or varying format lengths, with continuous or offset joints – there is immense scope for different combinations.

Panel sizes Linearis

<table>
<thead>
<tr>
<th>Panel Sizes</th>
<th>Pieces/m²</th>
</tr>
</thead>
<tbody>
<tr>
<td>1500×147×8 mm</td>
<td>4.37</td>
</tr>
<tr>
<td>2000×147×8 mm</td>
<td>3.28</td>
</tr>
<tr>
<td>2500×147×8 mm</td>
<td>2.63</td>
</tr>
<tr>
<td>1500×300×8 mm</td>
<td>2.18</td>
</tr>
<tr>
<td>2000×300×8 mm</td>
<td>1.64</td>
</tr>
<tr>
<td>2500×300×8 mm</td>
<td>1.31</td>
</tr>
</tbody>
</table>

5 mm joints

Holes in panel for rivets
Fastener holes to be done at the jobsite. Diameter 9.5 mm.

Panel joints
Swisspearl Linearis typical panel joint is 5 mm. Wider joints will make any inaccuracies in the installation less noticeable.

Installation Reflex
When installed all the arrows to Reflex panels must point in one and same direction.

Fixed point for Aluminum Sub-frame
Fixed point for Aluminum, Type 8 diameter 9.4 mm [B/4]
- Rivet head diameter 15 mm 4.0×18-K15, blank or powder coated, grip range 8-13 mm.

Fixed point for Steel Sub-frame
Fixed point steel A2, Type 8, diameter 9.4 mm [B/4]
- SS Rivet, head diameter 15 mm, 4.0×18-K15, blank or powder coated, grip range 9-14 mm.

Drill holes diameter 4.1 mm to metal profiles
Use concentric drill gauge so that the holes will be concentric to the diameter 9.5 mm hole in the panel. Use drill bit type A for aluminum profiles and type S for steel.

Details
Installation details as per this DIM are applicable.

Vertical installation
The arrangement of Swisspearl Linearis is usually horizontal. For the execution of a vertical application please contact the Technical Service.
Design | Metal supports

Swisspearl Linearis example

Attention! Staggered layout with centric T-profiles, the fastener hole is located in the center of the bracket.
Example outer corner

1. Swisspearl Largo 8 mm
2. Rivet 4.0×18-K15
3. Min. angle 60 x 60 mm
4. Min. angle 70 x 60 mm
5. Bracket
6. Thermal insulation

Example inner corner

Corner angle not attached back to building as shown can be cantilevered up to 400 mm
Example window jamb

1. Exterior wall
2. Thermal insulation
3. Horizontal support
4. Vertical support
5. Swisspearl Largo 8 mm
6. Rivet 4.5x18 K15
7. Swisspearl Largo jamb board 8 mm
8. Window frame
9. U or F-profile with sealant
10. Window sill

Window jamb with metal frame
Design I **Metal supports**

Example window sill

1. Exterior wall
2. Thermal insulation
3. Bracket
4. Vertical support
5. Ventilation cavity
6. Swisspearl Largo 8 mm
7. Rivet 4.0×18-K15
8. Perforated angle
9. Window sill
10. Window frame

Window sill made of metal
Design | Metal supports

Example window head

Perforated angle

1. Exterior wall
2. Thermal insulation
3. Ventilation cavity
4. Vertical support
5. Rivet 4.0×18-K15
6. Swisspearl Largo 8 mm
7. Swisspearl Largo 8 mm

Metal framing around whole window

8. U or F-profile
9. Perforated angle
10. Reinforcing profile
11. Angle profile insulation
12. Window frame

Head detail sun shutter
Example bottom detail

1. Thermal insulation
2. Bracket
3. Vertical support
4. Ventilated cavity
5. Swisspearl Largo 8 mm
6. Perforated angle
7. Rivet 4.0×18-K15
8. Thermal insulation
9. Thermal insulation water resistant

In order to avoid damages it is advised to keep a minimum distance of 200 mm from bottom of the panel to the ground.
Design | Metal supports

Example coping detail

1. Thermal insulation
2. Bracket
3. Vertical support
4. Ventilated cavity
5. Swisspearl Largo 8 mm
6. Perforated angle
7. Rivet 4.0×18-K15
8. Soffit
9. Coping
Swisspearl screw

Swisspearl screw; stainless steel, saucer head Ø 12 mm, T20 drive, 4.8×38 mm.

Distances to panel edge

Panel hole
Diameter 5.5 mm

Standard edge distances
Horizontally 30 mm
Vertically 80 mm

Minimum edge distances
Horizontally 30 mm
Vertically 60 mm

Maximum edge distance
Horizontally and vertically max. 100 mm

Panel joints
Typical panel joint is 8 mm, this allows panel scraps to be used as spacers. Wider joints will make any inaccuracies in the installation less noticeable.

Installation
The screws must be installed with depth stop at 90 degrees set to the panel. The screw head must rest even to the panel.

Sub-frame engineering
Engineer / contractor are responsible for the design and installation of all sub framing parts including all pertaining fasteners.

Timber battens
Straight grown pine, dry (max. 20% moisture content).
Timber battens

Installation over timber battens is allowed provided the design meets local engineered codes and standards.

Timber quality

Battens must be thickness gauged to 1 face:
- Thickness min. 27 mm (min. 3/4”)
- Always use planed surface timber
- Solidity class II (FK II/C24)
- Recommended only using kiln-dried lumber
- Moisture content max. 20-%
- Timber must be of equal or higher quality

Vertical battens

At panel joints:
2 x 27 x 60 mm or
1 x 27 x 120 mm
Intermediate supports:
27 x 60 mm

Engineering

Battens including their attachment to be engineered per local standards.

Battens screw

Screw Ø min. 6 mm
Head Ø min. 12 mm
For battens wider than 60 mm use two screws per point of attachment. Rear ventilation, thermal insulation, moisture proofing, wind proofing layers. All local standards are applicable and must be complied with.

Joint flashing

Horizontal joint and L-flashing should be 2 mm shorter than panel and thus not visible in vertical joints. If required butt joint the flashings on any batten, do not overlap flashing.

L-flashings and horizontal joint flashing are not 100% waterproof! Therefore all timber battens must be fully covered by EPDM bands to protect them against moisture and to prevent rotting and the growth of fungi and mold.

EPDM strips

All timber battens must be fully covered by EPDM backing strips stapled to the battens. Stapled at the edges of the bands. EPDM strips to be in one single piece top to bottom or overlapped as per diagram.
Horizontal panel joint

1. Swisspearl Largo 8 mm
2. Screw
3a. EPDM band 60 mm
3b. EPDM band 120 mm
3c. EPDM band 150 mm
4. Batten 27×60, 27×120 mm
5. Joint flashing

Horizontal section through vertical battens
Design | Timber battens

Vertical joint at window

1. Swisspearl Largo 8 mm
2. EPDM band 60 mm
3. EPDM band 150 mm
4. Batten 27×60 mm
5. Swisspearl window sill
Timber battens - 8 mm façade panels – screw distances

<table>
<thead>
<tr>
<th>Characteristic value of wind suction (according to European standards) kN/m²</th>
<th>Design value of wind suction (with a safety coefficient of 1.5) kN/m²</th>
<th>Spacing d (maximal distance between rivets)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>psf</td>
<td>psf</td>
</tr>
<tr>
<td>- 0.70</td>
<td>- 13.90</td>
<td>- 10</td>
</tr>
<tr>
<td>- 1.00</td>
<td>- 20.90</td>
<td>- 15</td>
</tr>
<tr>
<td>- 1.30</td>
<td>- 26.50</td>
<td>- 19</td>
</tr>
<tr>
<td>- 1.80</td>
<td>- 37.60</td>
<td>- 27</td>
</tr>
<tr>
<td>- 2.30</td>
<td>- 48.70</td>
<td>- 35</td>
</tr>
<tr>
<td>- 2.70</td>
<td>- 55.70</td>
<td>- 40</td>
</tr>
<tr>
<td>- 3.30</td>
<td>- 69.60</td>
<td>- 50</td>
</tr>
<tr>
<td>- 4.00</td>
<td>- 83.50</td>
<td>- 60</td>
</tr>
</tbody>
</table>

Above table is a guide line for 2 or more fasteners in vertical and horizontal direction. The spacings have been calculated considering a safety factor of 1.5. The spacings originate from 1230x3050 mm full size panels with equal distances between screws. Data may be interpolated.
Design I Timber battens

Engineering responsibility
The spacings in above table are provided as indication. For the actual cladding design a locally licensed engineer shall assume responsibility for calculation and verification.

Panel data
- Modulus of elasticity
 MOE ca. 15’000 MPa
- Modulus of rupture
 (characteristic)
 MOR (average) > 22 MPa
- Design value bending resistance
 8.0 MPa
 (2.5 safety factor)
- Density > 1.75g/cm³

Design values
Resistance of screws 4.8x38 Ø 12 mm

<table>
<thead>
<tr>
<th>Position</th>
<th>Distance between fasteners (spacing)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>720 mm</td>
</tr>
<tr>
<td>Middle</td>
<td>811 N</td>
</tr>
<tr>
<td>Edge</td>
<td>515 N</td>
</tr>
<tr>
<td>Corner</td>
<td>289 N</td>
</tr>
</tbody>
</table>

The data was evaluated according to ETAG 034 using 8 mm panel, and includes a safety factor of 2.5. Diameter of panel hole must be 5.5 mm, and screw head must be 12 mm. Minimum screw engagement in timber to be 27 mm. Edge distances 30 mm horizontally, 80 mm vertically. The data may be interpolated.
Timber battens - 12 mm façade panels – screw distances

<table>
<thead>
<tr>
<th>Characteristic value of wind suction (according to European standards) kN/m²</th>
<th>Design value of wind suction (with a safety coefficient of 1.5) kN/m²</th>
<th>Spacing d (maximal distance between rivets)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>psf</td>
<td>psf</td>
</tr>
<tr>
<td>2.23</td>
<td>46.64</td>
<td>3.35</td>
</tr>
<tr>
<td>3.00</td>
<td>62.65</td>
<td>4.50</td>
</tr>
<tr>
<td>3.83</td>
<td>80.05</td>
<td>5.75</td>
</tr>
<tr>
<td>4.24</td>
<td>88.55</td>
<td>6.36</td>
</tr>
<tr>
<td>5.97</td>
<td>124.74</td>
<td>8.96</td>
</tr>
<tr>
<td>6.95</td>
<td>145.07</td>
<td>10.42</td>
</tr>
<tr>
<td>7.96</td>
<td>166.23</td>
<td>11.94</td>
</tr>
<tr>
<td>9.00</td>
<td>187.95</td>
<td>13.50</td>
</tr>
</tbody>
</table>

Above table is a guide line for 2 or more fasteners in vertical and horizontal direction. The spacings have been calculated considering a safety factor of 1.5. The spacings originate from 1230x3050 mm full size panels with equal distances between screws. Data may be interpolated.
Design I Timber battens

Engineering responsibility
The spacings in above table are provided as indication. For the actual cladding design a locally licensed engineer shall assume responsibility for calculation and verification.

Panel data
- Modulus of elasticity
 MOE ca. 15'000 MPa
- Modulus of rupture (characteristic)
 MOR (average) > 22 MPa
- Design value bending resistance 8.0 MPa
 (2.5 safety factor)
- Density > 1.75g/cm3

Design values
Resistance of screws 4.8x44 Ø 12 mm

<table>
<thead>
<tr>
<th>Position</th>
<th>Distance between fasteners (spacing)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>180 mm</td>
</tr>
<tr>
<td>Middle</td>
<td>2474 N</td>
</tr>
<tr>
<td>Edge</td>
<td>1688.4 N</td>
</tr>
<tr>
<td>Corner</td>
<td>1360.4 N</td>
</tr>
</tbody>
</table>

The data was evaluated according to ETAG 034 using 8 mm panel, and includes a safety factor of 2.5. Diameter of panel hole must be 5.5 mm, and screw head must be 12 mm. Minimum screw engagement in timber to be 27 mm. Edge distances 30 mm horizontally, 80 mm vertically. The data may be interpolated.
Single span panel (no intermediate support)

Max. distance between fasteners for single span panels 570 mm, unless smaller distance is required by high wind load as per table of fastener distances.

Soffit panels

Fastener distances for soffit panels and suspended ceilings not to exceed 500mm.
Design | **Timber battens**

Sample screw layouts, final layout to be determined by a local structural engineer.

Swisspearl Largo vertical panel (portrait)

Swisspearl Largo horizontal panel (landscape)

Drill holes Ø 5.5 mm
Swisspearl Largo and Linearis

Swisspearl Largo strips or Linearis

Fastener distances [d1-d4]

<table>
<thead>
<tr>
<th>Wind load</th>
<th>≤ 0.45 kN/m²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Building height up to (m)</td>
<td>≤ 10</td>
</tr>
<tr>
<td>Strip width 100-150 mm [d1]</td>
<td>400</td>
</tr>
<tr>
<td>Strip width ≤ 200 [d2]</td>
<td>450</td>
</tr>
<tr>
<td>Strip width ≤ 300 [d3]</td>
<td>500</td>
</tr>
<tr>
<td>Strip width ≤ 400 [d]</td>
<td>see page 40</td>
</tr>
</tbody>
</table>
Swisspearl Largo stripes or Linearis with open joints

Product
Swisspearl Linearis are ready-made Largo panel strips, for installing with open joints. Whether monochrome or multicolored, equal or varying format lengths, with continuous or offset joints – there is immense scope for different combinations.

Panel sizes Linearis

<table>
<thead>
<tr>
<th>Size</th>
<th>Pieces/m²</th>
</tr>
</thead>
<tbody>
<tr>
<td>1500×147×8 mm</td>
<td>4.37</td>
</tr>
<tr>
<td>2000×147×8 mm</td>
<td>3.28</td>
</tr>
<tr>
<td>2500×147×8 mm</td>
<td>2.63</td>
</tr>
<tr>
<td>1500×300×8 mm</td>
<td>2.18</td>
</tr>
<tr>
<td>2000×300×8 mm</td>
<td>1.64</td>
</tr>
<tr>
<td>2500×300×8 mm</td>
<td>1.31</td>
</tr>
</tbody>
</table>

5 mm joints

Panel joints
Swisspearl Linearis typical panel joint is 5 mm.

Installation Reflex
When installed all the arrows to Reflex panels must point in one and same direction.

Timber battens
Installation over timber battens is allowed provided the design meets local engineered codes and standards.

EPDM strips
All timber battens must be fully cove-red by EPDM backing strips stapled to the battens. Stapled at the edges of the bands. EPDM strips to be in one single piece top to bottom or overlapped.

Details
Installation details as per this DIM are applicable.

Vertical installation
The arrangement of Swisspearl Linearis is usually horizontal. For the execution of a vertical application please contact the Technical Service.

Vertical battens
Under butt joint 1×40×120 mm or 2×40×60 mm, one-sided planed. Intermediate support 40×60 mm, one-sided planed.

Holes in panel for screws
Fastener holes to be done at the jobsite. Diameter 5.5 mm.

Mandatory the use of Swisspearl EPDM bands with side lips
Swisspearl Linearis example

By an offset configuration, fastener hole not to be placed at the joint axis (water course).
Design | Timber battens

Swisspearl Linearis example outer corner

Swisspearl Linearis example inner corner

Batten configuration to building corner as shown above with the use of 150 mm EPDM.

1 Swisspearl Linearis 8 mm
2 Swisspearl Screw 4.8×38 mm
3 EPDM band 150 mm
4 Batten 40×60 mm
5 Batten 27×60 mm
6 Thermal insulation
Design I **Timber battens**

Swisspearl Largo example outer corner

Swisspearl Largo example inner corner

1. Swisspearl Largo 8 mm
2. Swisspearl Screw 4.8×38 mm
3. EPDM band 150 mm
4. Batten 27×60 mm
5. Thermal insulation

Batten configuration to building corner as shown above with the use of 150 mm EPDM.
Example window jamb

1 Exterior wall
2 Thermal insulation
3 Horizontal support
4 Vertical support
5 Swisspearl Largo 8 mm
6 Jamb board
7 EPDM band 150 mm
8 Window frame
9 U or F-profile
10 Window sill

Jamb with 8 mm panels
Design | Timber battens

Example window sill

Window sill made of metal

1 Exterior wall
2 Thermal insulation
3 Vertical support
4 Horizontal support
5 Vertical support
6 Swisspearl Largo 8 mm
7 Screw 4.8×38 mm
8 Perforated angle
9 Window sill
10 Window frame
Design | Timber battens

Example window head

1. Exterior wall
2. Thermal insulation
3. Horizontal support
4. Vertical support
5. Ventilation cavity
6. Swisspearl Largo 8 mm
7. Swisspearl Largo 8 mm
8. U or F-profile with sealant
9. Perforated angle
10. EPDM band
11. Angle profile
12. Angle profile insulation
Example bottom detail

1. Thermal insulation
2. Horizontal batten
3. Horizontal support
4. Vertical support
5. Ventilated cavity
6. Spacer screw
7. Perforated angle
8. Swisspearl Largo 8 mm
9. Thermal insulation water resistant
10. Thermal insulation

Timber / timber

Timber / metal

Timber verticals with spacer screw
Example coping detail

Coping detail

Detail under slab

1. Thermal insulation
2. Horizontal batten
3. Horizontal support
4. Vertical support
5. Ventilated cavity
6. Swisspearl Largo 8 mm
7. Perforated angle
8. Screw
9. Soffit
10. Coping
On site storage
Pallets must be stored under cover i.e. out of rainfall and direct sunlight. Where this is not possible, store under tarp. Ingress of water into stacked panels will cause permanent staining to panel surface. Excess heat to stacked panels can cause damage to panel surface. Overseas pallets can be stacked several above another.

Provisional roofing or tarp covers are to be used in a manner that allows cross ventilation as shown.

Fabricating panels at local fabricators or on site
Always work out of the weather. Cutting panels to size:
- Use industrial vertical panel saw for large quantities
- For small quantities use circular hand saw with straight edge and dust extraction
- Panel cut outs, etc. use jig saw
- Cutting blade supplied by factory or procured locally, considering cutting quality, performance, costs
- Dust from fabricating on site must be removed immediately
- Avoid tools which produce fine dust

Stacking panels on site
- Always stack the panels horizontally on pallet base
- Each stack should not be more than 500 mm high (1’ 18”)
- Use foam protection layer between the panels (as supplied by factory)
- 5 stacks on top of each other

Pallet sequence
It is recommended to order the panels cut and pre-drill according to their sequence in the order to safe time while installing.
Panel fabrication on site
For long cuts use multifunction table with circular hand saw, guide rail and dust extractor. Saw blade supplied by panel manufacturer or at own choice.

Cut outs
For smaller cut outs or odd shapes use pendular jig saw. For drilling use spiral drill bits on site storage Ø 9.5 / Ø 5.5 mm (metal / timber supports) with carbide metal tips supplied by panel manufacturer or procured locally.

Sealer to cut edges
All cut edges must be sealed with impregnation liquid LUKO. Immediately wipe Luko off the face of the material.

Tools
- Drill
- Jig saw
- Rivet gun
- Center drill gauge
- Depth stop (mandatory for timber sub-frame)

LUKO hand applicator
LUKO filled in hand applicators is frost proof to -8°C (18°F). LUKO supplied in 1 liter bottles is not frost proof but dries faster (for fabrication in work shop).

Vacuum handle with silicone cups. (Keep silicone cups clean during installation to prevent scratching panels).

Circular hand saw with guide rail and dust extraction
Swisspearl Largo and Linearis

Swisspearl panels including Carat, Avera, Incora, Texial, Reflex Nobilis and Zenor including those panels with an added Façade and or Roof coatings fall into these categories.

Cleaning procedures
Remove dust immediately after fabricating panels.

Dry dust
To be removed with a vacuum cleaner, or with a clean, dry and soft cloth or brush.

Wet dust
Results in staining the panel surface. It must be removed immediately, using plenty of water and a sponge or soft brush.

Cleaning of completed claddings
Non calcium based stains:
• Use high pressure cold water at max. 80 bars (minimum distance from panel 25 cm/10”). Use flat fan spray nozzle, dirt blasters are not allowed. Prior do test on inconspicuous part of cladding
• If required use mild soap or dishwashing liquid. Do not use abrasive or solvent containing cleaning agents
• Do not use glass cleaning detergents!
• Never wash claddings in direct sun light with alkaline or acid cleaners, as the detergent may cause irreversible stains.

Calcium based stains:
• Apply a mist spray of a solution of 9.5% acetic acid and water
• Allow to react a few minutes but do not let dry out
• Use high pressure cold water to rinse cladding

Repeate steps 1 to 3 on difficult stains:

Cleaning during service life
Normally no cleaning will be needed since the rain will periodically wash away dust, environmental dirt, etc. However, if particular environmental conditions lead to a dirty surface, wash with garden hose or high pressure cold water.

Cleaning of HR panels
Clean the surface with a soft cloth, remove with Acetone using a different soft cloth. Apply 2-3 times treatment if necessary. If the surface is not acceptable after the 3rd time, a change of the panel is recommended.

Do not clean the surface in direct sun light, and always use appropriate safety equipment.

For detailed specifications on HR panels please contact your Technical Advisor.

Organic growth
Remove algae / fungi with a 5% solution of hydrogen peroxide (H2O2) to eliminate all spores.

Masking tape
For the use of masking tape on panels it should be noted that most common masking tapes are not resistant to UV rays. Such tapes leave behind residues, that cannot be removed without causing damage to panel surface. However the use of the following masking tapes is recommended:
• Masking tape 3M Blue 2090 for temporary application (1 - 2 weeks)
• Masking tape 3M Gold 244 for longer term application.